Àá½Ã¸¸ ±â´Ù·Á ÁÖ¼¼¿ä. ·ÎµùÁßÀÔ´Ï´Ù.
KMID : 0578320100290010077
Molecules and Cells
2010 Volume.29 No. 1 p.77 ~ p.84
Identification of an Arabidopsis Nodulin-Related Protein in Heat Stress
Fu Qiantang

Li Shujia
Yu Diqiu
Abstract
We identified a Nodulin-related protein 1 (NRP1) encoded by At2g03440, which was previously reported to be RPS2 interacting protein in yeast-two-hybrid assay. Northern blotting showed that AtNRP1 expression was suppressed by heat stress (42¡ÆC) and induced by low temperature (4¡ÆC) treatment. Strong GUS staining was observed in the sites of meristematic tissues of pAtNRP1:: GUS transgenic plants, such as shoot apex and root tips, young leaf veins, stamens and stigmas of flowers, and abscission layers of young siliques. To study AtNRP1 biological functions, we have characterized both loss-of-function T-DNA insertion and transgenic overexpression plants for AtNRP1 in Ara-bidopsis. The T-DNA insertion mutants displayed no obvious difference as compared to wild-type Arabidopsis under heat stress, but the significant enhanced suscepti-bility to heat stress was revealed in two independent AtNRP1-overexpressing transgenic lines. Further study found that the decreased thermtolerance in AtNRP1-overexpressing lines accompanied significantly decreased accumulation of ABA after heat treatment, which was probably due to AtNRP1 playing a role in negative-feedback regulation of the ABA synthesis pathway. These results support the viewpoint that the application of ABA inhibits nodulation and nodulin-related gene expression and threaten adverse ambient temperature can impact the nodulin-related gene expression.
KEYWORD
abscisic acid (ABA), heat stress, nodulin-related protein 1, thermotolerance
FullTexts / Linksout information
Listed journal information
SCI(E) MEDLINE ÇмúÁøÈïÀç´Ü(KCI)