Àá½Ã¸¸ ±â´Ù·Á ÁÖ¼¼¿ä. ·ÎµùÁßÀÔ´Ï´Ù.
KMID : 0578320170400080567
Molecules and Cells
2017 Volume.40 No. 8 p.567 ~ p.576
Cariporide Enhances the DNA Damage and Apoptosis in Acid-tolerable Malignant Mesothelioma H-2452 Cells
Lee Yoon-Jin

Bae Jin-Ho
Kim Soo-A
Kim Sung-Ho
Woo Kee-Min
Nam Hae-Seon
Cho Moon-Kyun
Lee Sang-Han
Abstract
The Na+/H+ exchanger is responsible for maintaining the acidic tumor microenvironment through its promotion of the reabsorption of extracellular Na+ and the extrusion of intracellular H+. The resultant increase in the extracellular acidity contributes to the chemoresistance of malignant tumors. In this study, the chemosensitizing effects of cariporide, a potent Na+/H+-exchange inhibitor, were evaluated in human malignant mesothelioma H-2452 cells preadapted with lactic acid. A higher basal level of phosphorylated (p)-AKT protein was found in the acid-tolerable H-2452AcT cells compared with their parental acid-sensitive H-2452 cells. When introduced in H-2452AcT cells with a concentration that shows only a slight toxicity in H-2452 cells, cariporide exhibited growth-suppressive and apoptosis-promoting activities, as demonstrated by an increase in the cells with pyknotic and fragmented nuclei, annexin V-PE(+) staining, a sub-G0/G1 peak, and a G2/M phase-transition delay in the cell cycle. Preceding these changes, a cariporide-induced p-AKT down-regulation, a p53 up-regulation, an ROS accumulation, and the depolarization of the mitochondrial-membrane potential were observed. A pretreatment with the phosphatidylinositol-3-kinase (PI3K) inhibitor LY294002 markedly augmented the DNA damage caused by the cariporide, as indicated by a much greater extent of comet tails and a tail moment with increased levels of the p-histone H2A.X, p-ATMSer1981, p-ATRSer428, p-CHK1Ser345, and p-CHK2Thr68, as well as a series of pro-apoptotic events. The data suggest that an inhibition of the PI3K/AKT signaling is necessary to enhance the cytotoxicity toward the acid-tolerable H-2452AcT cells, and it underlines the significance of proton-pump targeting as a potential therapeutic strategy to overcome the acidic-microenvironment-associated chemotherapeutic resistance.
KEYWORD
cariporide, LY294002, malignant mesothelioma, p53, phosphatidylinositol-3-kinase
FullTexts / Linksout information
Listed journal information
SCI(E) MEDLINE ÇмúÁøÈïÀç´Ü(KCI)