Àá½Ã¸¸ ±â´Ù·Á ÁÖ¼¼¿ä. ·ÎµùÁßÀÔ´Ï´Ù.
KMID : 0578320220450100729
Molecules and Cells
2022 Volume.45 No. 10 p.729 ~ p.737
Establishment and Characterization of Carboplatin-Resistant Retinoblastoma Cell Lines
Cho Chang-Sik

Jo Dong-Hyun
Kim Jin-Hyoung
Kim Jeong-Hun
Abstract
Carboplatin-based chemotherapy is the primary treatment option for the management of retinoblastoma, an intraocular malignant tumor observed in children. The aim of the present study was to establish carboplatin-resistant retinoblastoma cell lines to facilitate future research into the treatment of chemoresistant retinoblastoma. In total, two retinoblastoma cell lines, Y79 and SNUOT-Rb1, were treated with increasing concentrations of carboplatin to develop the carboplatin-resistant retinoblastoma cell lines (termed Y79/CBP and SNUOT-Rb1/CBP, respectively). To verify resistance to carboplatin, the degree of DNA fragmentation and the expression level of cleaved caspase-3 were evaluated in the cells, following carboplatin treatment. In addition, the newly developed carboplatin-resistant retinoblastoma cells formed in vivo intraocular tumors more effectively than their parental cells, even after the intravitreal injection of carboplatin. Interestingly, the proportion of cells in the G0/G1 phase was higher in Y79/CBP and SNUOT-Rb1/CBP cells than in their respective parental cells. In line with these data, the expression levels of cyclin D1 and cyclin D3 were decreased, whereas p18 and p27 expression was increased in the carboplatin-resistant cells. In addition, the expression levels of genes associated with multidrug resistance were increased. Thus, these carboplatin-resistant cell lines may serve as a useful tool in the study of chemoresistance in retinoblastoma and for the development potential therapeutics.
KEYWORD
carboplatin, cell cycle, chemoresistance, multidrug resistance, retinoblastoma.
FullTexts / Linksout information
Listed journal information
SCI(E) MEDLINE ÇмúÁøÈïÀç´Ü(KCI)