Àá½Ã¸¸ ±â´Ù·Á ÁÖ¼¼¿ä. ·ÎµùÁßÀÔ´Ï´Ù.
KMID : 0620920010330030150
Experimental & Molecular Medicine
2001 Volume.33 No. 3 p.150 ~ p.155
ATP-induced focal adhesion kinase activity is negatively modulated by phospholipase D2 in PC12 cells
Sung Ho Ryu/Yoe Sik Bae
Sung Ho Ryu
Abstract
Extracellular ATP has been known to modulate various cellular responses including mitogenesis, secretion and morphogenic activity in neuronal cells. In the ATP-induced morphogenic activity, focal adhesion kinase(s) such as Fak have been suggested to play a critical role. Binding of ATP to its specific cell surface receptor in PC12 cells induces phospholipase D (PLD) activity. However, the role of PLD on ATP-induced Fak activation in PC12 cells remains unclear. In this study, we investigated the role of PLD on the ATP-induced Fak activation and paxillin phosphorylation using two established cell lines: wild type PLD2- and lipase-inactive mutant PLD2-inducible PC12 cells. Stimulation of cells with ATP caused PLD2 activation via classical protein kinase C activation. ATP also induced Fak activation, and paxillin phosphorylation, and were dramatically reduced by wild type PLD2 overexpression but not by lipase-inactive mutant PLD2 overexpression. When the PC12 cells were pretreated with propranolol, a specific inhibitor for phosphatidic acid phosphohydrolase resulting in the accumulation of PA, ATP-induced Fak activation and paxillin phosphorylation were also reduced. We found that inhibition of tyrosine phosphatases by pervanadate completely blocked PLD2-dependent Fak and paxillin dephosphorylation. Taken together, we suggest that PLD2 activity might play a negative role in ATP-induced Fak and paxillin phosphorylation possibly through tyrosine phosphatases.
KEYWORD
Focal adhesion kinase, Phosphatidic acid, Phospholipase D, Paxillin, Tyrosine phosphatase,
FullTexts / Linksout information
 
Listed journal information
SCI(E) MEDLINE ÇмúÁøÈïÀç´Ü(KCI) KoreaMed ´ëÇÑÀÇÇÐȸ ȸ¿ø