Àá½Ã¸¸ ±â´Ù·Á ÁÖ¼¼¿ä. ·ÎµùÁßÀÔ´Ï´Ù.
KMID : 0880420200210080967
Korean Journal of Radiology
2020 Volume.21 No. 8 p.967 ~ p.977
Tube Voltage, DNA Double-Strand Breaks, and Image Quality in Coronary CT Angiography
Lin Zhu Xiao

Zhou Fan
Schoepf U. Joseph
Pillai Balakrishnan
Zhou Chang Sheng
Quan Wei
Bao Xue Qin
Lu Guang Ming
Zhang Long Jiang
Abstract
Objective: To evaluate the effects of tube voltage on image quality in coronary CT angiography (CCTA), the estimated radiation dose, and DNA double-strand breaks (DSBs) in peripheral blood lymphocytes to optimize the use of CCTA in the era of low radiation doses.

Materials and Methods: This study included 240 patients who were divided into 2 groups according to the DNA DSB analysis methods, i.e., immunofluorescence microscopy and flow cytometry. Each group was subdivided into 4 subgroups: those receiving CCTA only with different tube voltages of 120, 100, 80, or 70 kVp. Objective and subjective image quality was evaluated by analysis of variance. Radiation dosages were also recorded and compared.

Results: There was no significant difference in demographic characteristics between the 2 groups and 4 subgroups in each group (all p > 0.05). As tube voltage decreased, both image quality and radiation dose decreased gradually and significantly. After CCTA, ¥ã-H2AX foci and mean fluorescence intensity in the 120-, 100-, 80-, and 70-kVp groups increased by 0.14, 0.09, 0.07, and 0.06 foci per cell and 21.26, 9.13, 8.10, and 7.13 (all p < 0.05), respectively. The increase in the DNA DSB level in the 120-kVp group was higher than those in the other 3 groups (all p < 0.05), while there was no significant difference in the DSBs levels among these latter groups (all p > 0.05).

Conclusion: The 100-kVp tube voltage may be optimal for CCTA when weighing DNA DSBs against the estimated radiation dose and image quality, with further reductions in tube voltage being unnecessary for CCTA.
KEYWORD
Radiation dosage, Computed tomography angiography, Immunofluorescence microscopy, Flow cytometry, DNA damage
FullTexts / Linksout information
   
Listed journal information
SCI(E) MEDLINE ÇмúÁøÈïÀç´Ü(KCI) KoreaMed ´ëÇÑÀÇÇÐȸ ȸ¿ø