Àá½Ã¸¸ ±â´Ù·Á ÁÖ¼¼¿ä. ·ÎµùÁßÀÔ´Ï´Ù.
KMID : 0893420180190030416
Journal of Veterinary Science
2018 Volume.19 No. 3 p.416 ~ p.425
Effect of immunization routes and protective efficacy of Brucella antigens delivered via Salmonella vector vaccine
Lalsiamthara Jonathan

Won Ga-Yeon
Lee John-Hwa
Abstract
An anti-Brucella vaccine candidate comprised of purified Brucella lipopolysaccharide (LPS) and a cocktail of four Salmonella Typhimurium (ST)-Brucella vectors was reported previously. Each vector constitutively expressed highly conserved Brucella antigens (rB), viz., lumazine synthase (BLS), proline racemase subunit A, outer membrane protein-19 (Omp19), and Cu-Zn superoxide dismutase (SOD). The present study determined a relative level of protection conferred by each single strain. Upon virulent challenge, the challenge strain was recovered most abundantly in non-immunized control mice, with the ST-Omp19-, ST-BLS-, LPS-, and ST-SOD-immunized mice showing much less burden. Indirect enzyme-linked immunosorbent assay-based assay also confirmed the induction of antigen-specific immunoglobulin G for each antigen delivered. In a route-wise comparison of the combined vaccine candidate, intraperitoneal (IP), intramuscular (IM), and subcutaneous immunizations revealed an indication of highly efficient routes of protection. Splenocytes of mice immunized via IM and IP routes showed significant relative expression of IL-17 upon antigenic pulsing. Taken together, each of the Brucella antigens delivered by ST successfully induced an antigen-specific immune response, and it was also evident that an individual antigen strain can confer a considerable degree of protection. More effective protection was observed when the candidate was inoculated via IP and IM routes.
KEYWORD
Salmonella delivery, brucellosis, protective efficacy, vaccination
FullTexts / Linksout information
  
Listed journal information
SCI(E) MEDLINE ÇмúÁøÈïÀç´Ü(KCI) KoreaMed