Àá½Ã¸¸ ±â´Ù·Á ÁÖ¼¼¿ä. ·ÎµùÁßÀÔ´Ï´Ù.
KMID : 1012020190080030146
Physical Therapy Rehabilitation Science
2019 Volume.8 No. 3 p.146 ~ p.151
Reliability of joint angle during sit-to-stand movements in persons with stroke using portable gait analysis system based wearable sensors
An Jung-Ae

Lee Byoung-Hee
Abstract
Objective: The purpose of this study was to investigate the test-retest reliability and concurrent validity of the joint angle of the lower extremities during sit-to-stand movements with wearable sensors based on a portable gait analysis system (PGAS), and the results were compared with a analysis system (MAS) to predict the clinical potential of it.

Design: Cross-sectional study.

Methods: Sixteen persons with stroke (9 males, 7 females) participated in this study. All subjects had the MAS and designed PGS applied simultaneously and eight sensor units of designed PGAS were placed in a position to avoid overlap with the reflexive markers from MAS. The initial position of the subjects was 90¡Æ of hip, knee, and ankle joint flexion while sitting on a chair that was armless and backless. The height of the chair was adjusted to each individual. After each trial, the test administrator checked the quality of data from both systems that measured sit-to-stand for test-retest reliability and concurrent validity.

Results: As a result, wearable sensor based designed PGAS and MAS demonstrated reasonable test-retest reliability for the assessment of joint angle in the lower extremities during sit-to-stand performance. The intra-class correlation coefficients (ICCs) for wearable sensor based designed PGAS showed an acceptable test-retest reliability, with ICCs ranging from 0.759 to 0.959. In contrast, the MAS showed good to excellent test-retest reliability, with ICCS ranging from 0.811 to 0.950. In concurrent validity, a significant positive relationship was observed between PGAS and MAS for variation of joint angle during sit-to-stand movements (p<0.01). A moderate to high relationship was found in the affected hip (r=0.665), unaffected hip (r=0.767), affected knee (r=0.876), unaffected knee (r=0.886), affected ankle (r=0.943) and unaffected ankle (r=0.823) respectively.

Conclusions: The results of this study indicated that wearable sensor based designed PGAS showed acceptable test-retest reliability and concurrent validity in persons with stroke for sit-to-stand movements and wearable sensors based on developed PGAS may be a useful tool for clinical assessment of functional movement.
KEYWORD
Analysis, Movement, Position, Stroke
FullTexts / Linksout information
 
Listed journal information