Àá½Ã¸¸ ±â´Ù·Á ÁÖ¼¼¿ä. ·ÎµùÁßÀÔ´Ï´Ù.
KMID : 1012320060090010020
Nutritional Sciences
2006 Volume.9 No. 1 p.20 ~ p.28
Influence of Dietary Zinc, Copper and Cadmium Levels on Rat Liver Aryl Sulfotransferase IV Activity
Chung Keun-Hee

Ringel David P.
Shin Kyung-Ok
Abstract
Aryl sulfotransferase (AST) IV is a liver enzyme involved in detoxication and has been shown to be susceptible to down regulation by a number of hepatotoxic xenobiotics. Studies presented here to investigate the ability of biological and non-biological divalent metal cations on AST IV activity showed that AST IV was strongly inhibited following in vitro or in vivo exposure to. Zn ( II ), Co ( II ) or Cd ( II ). It was found that $0.025~$2.5 uM of these metal ions were sufficient to cause 50% of inhibition in vitro in purified AST IV and $0.25~$25 uM of these metal ions in liver cytosolic fractions. For the in vivo study, 1,000 mg Cu ( II )/kg, 2,000 mg Zn ( II )/kg or 250 mg Cd( II )/kg was added to individual diets and administered to three (3) group; of mts over a 7 week period The Co ( II )-supplemented diet produced no apparent change in rat growth rate and resulted in 30-fold increase in liver cytotolic Cu ( II ) levels, suggesting that elevated levels of Cu ( II ) ion in the liver were responsible for the loss of AST IV activity. In contrast, the Zn ( II )-supplemented diet caused a decrease in rat growth rates and resulted in zero increase in liver Zn ( II ) levels, which suggested an indirect inhibition mechanism was caused by Zn ( II ) in the liver. Rats were fed the Cd-supplemented diet also displayed a decrease in growth rate with little or no change in liver Cu ( II ) or Zn ( II ) levels. When the liver cytosols of mts from the metal ion diets were immunochemically analyzed for the AST IV and albumin contents, no significant changes were observed in albumin levels. However, AST IV contents in the cytosols of mts fed the Zn ( II )-supplemented diets showed a slight decrease in amount These results showed that AST IV activity in vitro and in vivo can be inhibited by Co ( II ), Zn ( II ), and Cd ( II ) by apparently different mechanisms. The immediate response to a Zn injection showed a decrease in AST IV activity but not in the AST IV content in liver cytosol. These mechanisms appeared to involve direct actions of the metal ion on AST IV activity and indirect actions affecting AST IV amount.
KEYWORD
Aryl sulfotransferase IV, Copper, Cadmium, Zinc, Liver cytosol
FullTexts / Linksout information
Listed journal information