Àá½Ã¸¸ ±â´Ù·Á ÁÖ¼¼¿ä. ·ÎµùÁßÀÔ´Ï´Ù.
KMID : 1023520130360030171
Korean Journal of Veterinary Service
2013 Volume.36 No. 3 p.171 ~ p.180
Antimicrobial resistance and distribution of resistance gene in Enterobacteriaceae and Pseudomonas aeruginosa isolated from dogs and cats
Cho Jae-Keun

Kim Jin-Hyun
Kim Jeong-Mi
Park Choi-Kyu
Kim Ki-Seuk
Abstract
This study was carried out to investigate the antimicrobial resistance pattern and distribution of resistance gene in 44 Enterobacteriaceae and 21 Pseudomonas (P) aeruginosa isolated from hospitalized dogs and cats in animal hospital from 2010 to 2011 in Daegu. Among Enterobacteriaceae, Escherichia (E) coli was highly resistant to ampicillin (56.7%), followed by tetracycline (53.3%), cephalothin, streptomycine, sulfamethoxazole/trimethoprim, gentamicin and norfloxacin (40.0¡­43.3%). The remaining isolates of Enterobacteriaceae had high resistance to ampicillin (64.3%) and streptomycin (42.9%). Whereas, P. aeruginosa was low resistant to all antimicrobials tested (less than 15%). int I 1 gene was detected in 20 (57.1%) of 35 antimicrobial resistant Enterobacteriaceae and 2 (9.5%) of 21 P. aeruginosa., but int I 2 gene was not detected in all isolates. The eight resistance genes were found either alone or combination with other gene (s): blaTEM, aadA, strA-strB, clmA, tetA, tetB, sul I and sul II. About 78% of integron-positive isolates were resistance to more than four antimicrobial agents. The findings suggest that class I integrons are widely distributed in E. coli among Enterobacteriaceae from dogs and cats and multi-drug resistance related to the presence of class I integrons. The prudent use of antimicrobials and continuous monitoring for companion animals are required.
KEYWORD
Enterobacteriaceae, E. coli, P. aeruginosa, Resistance gene
FullTexts / Linksout information
Listed journal information
ÇмúÁøÈïÀç´Ü(KCI)