Àá½Ã¸¸ ±â´Ù·Á ÁÖ¼¼¿ä. ·ÎµùÁßÀÔ´Ï´Ù.
KMID : 1034820080040040323
Molecular & Cellular Toxicology
2008 Volume.4 No. 4 p.323 ~ p.330
Gene Expression Changes in Peripheral Blood Mononuclear Cells from Cynomolgus Monkeys Following Astemizole Exposure
Park Han-Jin

Seo Jeong-Wook
Oh Jung-Hwa
Lee Sun-Hee
Lee Eun-Hee
Kim Choong-Yong
Yoon Seok-Joo
Abstract
Surrogate tissue analysis incorporating -omics technologies has emerged as a potential alternative method for evaluating toxic effect of the tissues which are not accessible for sampling. Among the recent applications, blood including whole blood, peripheral blood lymphocytes and peripheral blood mononuclear cells (PBMCs) was suggested as a suitable surrogate tissue in determining toxicant exposure and effect at the pre- or early clinical stage. In this application, we investigated transcriptomic profiles in astemizole treated Cynomolgus monkey¡¯s PBMCs. PBMCs were isolated from 4-6 years old male monkeys at 24 hr after administration45 Helvetica Light (10 mg/kg, 30 mg/kg). Gene expression profiles of astemizole treated monkey¡¯s PBMCs were determined using Affymetrix Human Genome U133 plus 2.0 arrays. The expression levels of 724 probe sets were significantly altered in PBMCs at 10 or 30 mg/kg after astemizole administration following determination of paired t-test using statistical criteria of $1.5-fold changes at P<0.05. Gene expression patterns in PBMCs showed a considerable difference between astemizole 10 and 30 mg/kg administration groups in spite of an administration of the same chemical. However, close examination using Ingenuity Pathway Analysis (IPA) software revealed that several gene sets related to cardiotoxicity were deregulated at astemizole 10 and 30 mg/kg administration groups. The deregulation of cardiac hypertrophy related genes such as TXN, GNAQ, and MAP3K5 was observed at 10 mg/kg group. In astemizole 30 mg/kg group, genes involved in cardiotoxicity including cardiac necrosis/cell death, dilation, fibrosis, and hypertrophy were also identified. These results suggest that toxicogenomic approach using PBMCs as surrogate tissues will contribute to assess toxicant exposures and identify biomarkers at the pre-clinical stage.
KEYWORD
Surrogate, Astemizole, Monkey, Cardiotoxicity, Peripheral blood monocyte cell
FullTexts / Linksout information
Listed journal information