Àá½Ã¸¸ ±â´Ù·Á ÁÖ¼¼¿ä. ·ÎµùÁßÀÔ´Ï´Ù.
KMID : 1034820090050010051
Molecular & Cellular Toxicology
2009 Volume.5 No. 1 p.51 ~ p.57
Profiling of Gene Expression in Human Keratinocyte Cell Line Exposed to Quantum Dot Nanoparticles
Kim In-Kyoung

Lee Seung-Ho
Kim Yu-Ri
Seo Sang-Hui
Jeong Sang-Hoon
Son Sang-Wook
Kim Meyoung-Kon
Abstract
Quantum Dot (QD) nanoparticles are used in various industrial applications, such as diagnostic, drug delivery, and imaging agents of biomedicine. Although QDs are extensively used in many medical science, several studies have been demonstrated the potential toxicity of nanoparticles. The first objective of this study was to investigate the nanotoxicity of QDs in the HaCaT human keratinocyte cell line by focusing on gene expression pattern. In order to evaluate the effect of QDs on gene expression profile in HaCaT cells, we analyzed the differential genes which related to oxidative stress and antioxidant defense mechanisms by using human cDNA microarray and PCR array. A human cDNA microarray was clone set, which was sorted for a list of genes correlated with cell mechanisms. We tried to confirm results of cDNA microarray by using PCR array, which is pathway-focused gene expression profiling technology using Real-Time PCR. Although we could not find the exactly same genes in both methods, we have screened the effects of QDs on global gene expression profiles in human skin cells. In addition, our results show that QD treatment somehow regulates cellular pathways of oxidative stress and antioxidant defense mechanisms. Therefore, we suggest that this study can enlarge our knowledge of the transcriptional profile and identify new candidate biomarker genes to evaluate the toxicity of nanotoxicology.
KEYWORD
Quantum dot, cDNA microarray, PCR array, Keratinocyte
FullTexts / Linksout information
Listed journal information