Àá½Ã¸¸ ±â´Ù·Á ÁÖ¼¼¿ä. ·ÎµùÁßÀÔ´Ï´Ù.
KMID : 1118520190160040262
Psychiatry Investigation
2019 Volume.16 No. 4 p.262 ~ p.269
Review of Machine Learning Algorithms for Diagnosing Mental Illness
Cho Gyeong-Cheol

Yim Jin-Yeong
Choi Youn-Young
Ko Jung-Min
Lee Seoung-Hwan
Abstract
Objective: Enhanced technology in computer and internet has driven scale and quality of data to be improved in various areas including healthcare sectors. Machine Learning (ML) has played a pivotal role in efficiently analyzing those big data, but a general misunderstanding of ML algorithms still exists in applying them (e.g., ML techniques can settle a problem of small sample size, or deep learning is the ML algorithm). This paper reviewed the research of diagnosing mental illness using ML algorithm and suggests how ML techniques can be employed and worked in practice.

Methods: Researches about mental illness diagnostic using ML techniques were carefully reviewed. Five traditional ML algorithms-Support Vector Machines (SVM), Gradient Boosting Machine (GBM), Random Forest, Naive Bayes, and K-Nearest Neighborhood (KNN)-frequently used for mental health area researches were systematically organized and summarized.

Results: Based on literature review, it turned out that Support Vector Machines (SVM), Gradient Boosting Machine (GBM), Random Forest, Naive Bayes, and K-Nearest Neighborhood (KNN) were frequently employed in mental health area, but many researchers did not clarify the reason for using their ML algorithm though every ML algorithm has its own advantages. In addition, there were several studies to apply ML algorithms without fully understanding the data characteristics.

Conclusion: Researchers using ML algorithms should be aware of the properties of their ML algorithms and the limitation of the results they obtained under restricted data conditions. This paper provides useful information of the properties and limitation of each ML algorithm in the practice of mental health.
KEYWORD
Machine learning, Mental illness, Big data
FullTexts / Linksout information
  
Listed journal information
SCI(E) ÇмúÁøÈïÀç´Ü(KCI) KoreaMed