Àá½Ã¸¸ ±â´Ù·Á ÁÖ¼¼¿ä. ·ÎµùÁßÀÔ´Ï´Ù.
KMID : 1120220120030020074
Osong Public Health and Research Perspectives
2012 Volume.3 No. 2 p.74 ~ p.78
Proteomic Analysis of Cellular and Membrane Proteins in Fluconazole-Resistant Candida glabrata
Yoo Jae-Il

Choi Chi-Won
Kim Hwa-Su
Yoo Jung-Sik
Jeong Young-Hee
Lee Yeong-Seon
Abstract
Objectives: Candida glabrata is one of the most common causes of Candida bloodstream infections worldwide. Some isolates of C glabrata may be intermediately resistant to azoles, with some strains developing resistance during therapy or prophylaxis with fluconazole. In this study, we used a proteomic approach to identify differentially expressed proteins between fluconazoleresistant and -susceptible strains.

Methods: Membrane and cellular proteins were extracted from fluconazolesusceptible and fluconazole-resistant C glabrata strains. Differentially expressed proteins were compared using two-dimensional sodium dodecyl sulfate polyacrylamide gel electrophoresis. Proteins with >1.5-fold difference in expression were identified by liquid chromatography tandem mass spectrometry (LC-MS/MS).

Results: A total of 65 proteins were differentially expressed in the cellular and membrane fractions. Among the 39 cellular proteins, 11 were upregulated and 28 were downregulated in fluconazole-resistant strains in comparison with fluconazole-susceptible strains. In the membrane fraction, a total of 26 proteins were found, of which 19 were upregulated and seven were downregulated. A total of 31 proteins were identified by LC-MS/MS that are involved in glycolysis, carbohydrate transport, energy transfer, and other metabolic pathways. Heat shock proteins were identified in various spots.

Conclusion: Heat shock and stress response proteins were upregulated in the membrane fraction of the fluconazole-resistant C glabrata strain. Compared with susceptible strains, fluconazole-resistant strains showed increased expression of membrane proteins and decreased expression of cellular proteins.
KEYWORD
azole resistance, candidiasis, heat shock protein, proteomics, stress response protein
FullTexts / Linksout information
Listed journal information
KoreaMed