Àá½Ã¸¸ ±â´Ù·Á ÁÖ¼¼¿ä. ·ÎµùÁßÀÔ´Ï´Ù.
KMID : 1141120190050020055
The Nerve
2019 Volume.5 No. 2 p.55 ~ p.59
Pediatric Skull Fractures Based on Three-Dimensional Computed Tomography: Correlation of Skull Fracture Types, Location, Severity, and Accompanying Head Injuries with Surgical Risk in 291 Children
Lee Hyeong-Rae

Kim Jong-Yeon
Lim Yong-Cheol
Yoon Soo-Han
Abstract
Objective: Skull fractures are one of the most common trauma injuries among children, and pediatric skull fractures are more complex due to incomplete ossification of sutures. Because 3-dimensional computed tomography (3DCT) can provide a more accurate assessment of all skull fracture types that also increase the detection rate of skull fractures, we need to review pediatric skull fractures based on 3DCT.

Methods: Two hundred ninety-one patients younger than 12 years were included in this study. We retrospectively studied the correlation of the skull fracture types, location, severity, and accompanying head injuries with surgery rates.

Results: The most common skull fracture type was linear (64.6%), followed by mixed (20.6%) and diastatic (7.6%). The most common location of skull fractures was parietal (43.3%), followed by occipital (26.1%) and frontal (13.4%). Thirty-six patients (12.4%) underwent surgery. Statistically significant difference in surgical risk was observed in the presence of subgaleal hemorrhage, epidural hemorrhage, subdural hemorrhage, intracerebral hemorrhage, subarachnoid hemorrhage, and brain swelling (p<0.05).

Conclusion: In most pediatric patients with skull fractures, 3DCT studies seem to be important in terms of diagnostic accuracy for skull fracture types, locations, and risk of surgery. We suggest that skull fracture severity, type, and location with degree of other accompanying head injury lesions may be significant prognostic factors.
KEYWORD
Craniocerebral trauma, Pediatrics, Skull fractures, Tomography, X-ray computed
FullTexts / Linksout information
 
Listed journal information