KMID : 1143620150190010012
|
|
Korean Journal of Nuclear Medicine Technology 2015 Volume.19 No. 1 p.12 ~ p.16
|
|
Principal component analysis in C[11]-PIB imaging
|
|
Kim Nam-Beom
Shin Gwi-Soon Ahn Sung-Min
|
|
Abstract
|
|
|
Purpose : Principal component analysis (PCA) is a method often used in the neuroimagre analysis as a multivariate analysis technique for describing the structure of high dimensional correlation as the structure of lower dimensional space. PCA is a statistical procedure that uses an orthogonal transformation to convert a set of observations of correlated variables into a set of values of linearly independent variables called principal components. In this study, in order to investigate the usefulness of PCA in the brain PET image analysis, we tried to analyze C[11]-PIB PET image as a representative case.
Materials and Methods : Nineteen subjects were included in this study (normal = 9, AD/MCI = 10). For C[11]-PIB, PET scan were acquired for 20 min starting 40 min after intravenous injection of 9.6 MBq/kg C[11]-PIB. All emission recordings were acquired with the Biograph 6 Hi-Rez (Siemens-CTI, Knoxville, TN) in three-dimensional acquisition mode. Transmission map for attenuation-correction was acquired using the CT emission scans (130 kVp, 240 mA). Standardized uptake values (SUVs) of C[11]-PIB calculated from PET/CT. In normal subjects, 3T MRI T1-weighted images were obtained to create a C[11]-PIB template. Spatial normalization and smoothing were conducted as a pre-processing for PCA using SPM8 and PCA was conducted using Matlab2012b.
Results : Through the PCA, we obtained linearly uncorrelated independent principal component images. Principal component images obtained through the PCA can simplify the variation of whole C[11]-PIB images into several principal components including the variation of neocortex and white matter and the variation of deep brain structure such as pons.
Conclusion : PCA is useful to analyze and extract the main pattern of C[11]-PIB image. PCA, as a method of multivariate analysis, might be useful for pattern recognition of neuroimages such as FDG-PET or fMRI as well as C[11]-PIB image.
|
|
KEYWORD
|
|
Principal component analysis, C[11]-PIB, Alzheimer's disease
|
|
FullTexts / Linksout information
|
|
|
|
Listed journal information
|
|
|
|