Àá½Ã¸¸ ±â´Ù·Á ÁÖ¼¼¿ä. ·ÎµùÁßÀÔ´Ï´Ù.
KMID : 1144820230290020053
´ëÇÑÀÇ»ý¸í°úÇÐȸÁö
2023 Volume.29 No. 2 p.53 ~ p.57
Application of Artificial Intelligence-based Digital Pathology in Biomedical Research
Kang Jin-Seok
Abstract
The main objective of pathologists is to achieve accurate lesion diagnoses, which has become increasingly challenging due to the growing number of pathological slides that need to be examined. However, using digital technology has made it easier to complete this task compared to older methods. Digital pathology is a specialized field that manages data from digitized specimen slides, utilizing image processing technology to automate and improve analysis. It aims to enhance the precision, reproducibility, and standardization of pathology-based researches, preclinical, and clinical trials through the sophisticated techniques it employs. The advent of whole slide imaging (WSI) technology is revolutionizing the pathology field by replacing glass slides as the primary method of pathology evaluation. Image processing technology that utilizes WSI is being implemented to automate and enhance analysis. Artificial intelligence (AI) algorithms are being developed to assist pathologic diagnosis and detection and segmentation of specific objects. Application of AI-based digital pathology in biomedical researches is classified into four areas: diagnosis and rapid peer review, quantification, prognosis prediction, and education. AI-based digital pathology can result in a higher accuracy rate for lesion diagnosis than using either a pathologist or AI alone. Combining AI with pathologists can enhance and standardize pathology-based investigations, reducing the time and cost required for pathologists to screen tissue slides for abnormalities. And AI-based digital pathology can identify and quantify structures in tissues. Lastly, it can help predict and monitor disease progression and response to therapy, contributing to personalized medicine.
KEYWORD
Digital pathology, Whole slide imaging, Artificial intelligence
FullTexts / Linksout information
Listed journal information
ÇмúÁøÈïÀç´Ü(KCI)