KMID : 1147720140070030140
|
|
Journal of Acupuncture and Meridian Studies 2014 Volume.7 No. 3 p.140 ~ p.150
|
|
Strong Anticancer Potential of Nano-triterpenoid from Phytolacca decandra against A549 Adenocarcinoma via a Ca2+-dependent Mitochondrial Apoptotic Pathway
|
|
Das Jayeeta
Das Sreemanti Paul Avijit Samadder Asmita Khuda-Bukhsh Anisur Rahman
|
|
Abstract
|
|
|
We isolated a triterpenoid from an ethanolic extract of Phytolacca decandra and nanoencapsulated it with biodegradable nontoxic polymers of poly(lactide-co-glycolide) to examine if the nanoform of this hitherto unexplored betulinic-acid derivative (NdBA) could produce a stronger anticancer effect by rendering better drug bioavailability and targeted delivery than the nonencapsulated betulinic-acid derivative (dBA). The nanoparticles were characterized with the help of physicochemical and morphological studies involving dynamic light scattering and atomic force microscopy. A549 cancer cells were exposed to NdBA and dBA at the IC50 doses of 50 ¥ìg/mL and 100 ¥ìg/mL, respectively. Mitochondrial dysfunction-mediated apoptosis was determined by examining the changes in the intracellular calcium content, the reactive oxygen species accumulation, the cytochrome c release, the upregulation of Bcl-2-associated-X protein (Bax) and caspase 3, the downregulation of B cell lymphoma 2, and the mitochondrial membrane potential (¥Ä¥×m) depolarization. Apoptosis was also verified by acridine orange staining observed under fluorescence microscopy and annexin V-fluorescein isothiocyanate/propidium iodide staining through flow cytometric studies. The levels of intracellular adenosine triphosphate/adenosine diphosphate ratio decreased, and the ATPase activity increased more strikingly in A549 cells exposed to NdBA than in A549 cells exposed to dBA. Overall results showed that both drugs directly target the mitochondrial oxidative phosphorylation system, with NdBA having a stronger effect, indicating NdBA to be a better candidate for the development of an anticancer drug for use against lung adenocarcinomas.
|
|
KEYWORD
|
|
A549 lung adenoma cells, apoptosis, betulinic acid, intracellular calcium content, Phytolacca decandra, PLGA nanoparticles
|
|
FullTexts / Linksout information
|
|
|
|
Listed journal information
|
|
|