Àá½Ã¸¸ ±â´Ù·Á ÁÖ¼¼¿ä. ·ÎµùÁßÀÔ´Ï´Ù.
KMID : 0545120220320010126
Journal of Microbiology and Biotechnology
2022 Volume.32 No. 1 p.126 ~ p.140
Global Proteomic Analysis of Mesenchymal Stem Cells Derived from Human Embryonic Stem Cells via Connective Tissue Growth Factor Treatment under Chemically Defined Feeder-Free Culture Conditions
Seo Ji-Hye

Jeon Young-Joo
Abstract
Stem cells can be applied usefully in basic research and clinical field due to their differentiation and self-renewal capacity. The aim of this study was to establish an effective novel therapeutic cellular source and create its molecular expression profile map to elucidate the possible therapeutic mechanism and signaling pathway. We successfully obtained a mesenchymal stem cell population from human embryonic stem cells (hESCs) cultured on chemically defined feeder-free conditions and treated with connective tissue growth factor (CTGF) and performed the expressive proteomic approach to elucidate the molecular basis. We further selected 12 differentially expressed proteins in CTGF-induced hESC-derived mesenchymal stem cells (C-hESC-MSCs), which were found to be involved in the metabolic process, immune response, cell signaling, and cell proliferation, as compared to bone marrow derived-MSCs(BM-MSCs). Moreover, these up-regulated proteins were potentially related to the Wnt/¥â-catenin pathway. These results suggest that C-hESC-MSCs are a highly proliferative cell population, which can interact with the Wnt/¥â-catenin signaling pathway; thus, due to the upregulated cell survival ability or downregulated apoptosis effects of C-hESC-MSCs, these can be used as an unlimited cellular source in the cell therapy field for a higher therapeutic potential. Overall, the study provided valuable insights into the molecular functioning of hESC derivatives as a valuable cellular source.
KEYWORD
Mesenchymal stem cell, CTGF, proteomics, Wnt/¥â-catenin, cell therapy
FullTexts / Linksout information
Listed journal information
SCI(E) MEDLINE ÇмúÁøÈïÀç´Ü(KCI)