Àá½Ã¸¸ ±â´Ù·Á ÁÖ¼¼¿ä. ·ÎµùÁßÀÔ´Ï´Ù.
KMID : 0624620200530040206
BMB Reports
2020 Volume.53 No. 4 p.206 ~ p.211
Hypoxia-induced miR-1260b regulates vascular smooth muscle cell proliferation by targeting GDF11
Seong Min-Hyeong

Kang Ha-Ra
Abstract
Vascular smooth muscle cells (VSMCs) are a unique cell type that has unusual plasticity controlled by environmental stimuli. As an abnormal increase of VSMC proliferation is associated with various vascular diseases, tight regulation of VSMC phenotypes is essential for maintaining vascular homeostasis. Hypoxia is one environmental stress that stimulates VSMC proliferation. Emerging evidence has indicated that microRNAs (miRNAs) are critical regulators in the hypoxic responses of VSMCs. Therefore, we previously investigated miRNAs modulated by hypoxia in VSMCs and found that miR-1260b is one of the most upregulated miRNAs under hypoxia. However, the mechanism that underlies the regulation of VSMCs via miR-1260b in response to hypoxia has not been explored. Here we demonstrated that hypoxia-induced miR-1260b promotes VSMC proliferation. We also identified growth differentiation factor 11 (GDF11), a member of the TGF-¥â superfamily, as a novel target of miR-1260b. miR-1260b directly targets the 3¡¯UTR of GDF11. Downregulation of GDF11 inhibited Smad signaling and consequently enhanced the proliferation of VSMCs. Our findings suggest that miR-1260b-mediated GDF11-Smad-dependent signaling is an essential regulatory mechanism in the proliferation of VSMCs, and this axis is modulated by hypoxia to promote abnormal VSMC proliferation. Therefore, our study unveils a novel function of miR-1260b in the pathological proliferation of VSMCs under hypoxia.
KEYWORD
GDF11, Hypoxia, microRNA, miR-1260b, Smad signaling, Vascular smooth muscle cell
FullTexts / Linksout information
 
Listed journal information
SCI(E) ÇмúÁøÈïÀç´Ü(KCI) ´ëÇÑÀÇÇÐȸ ȸ¿ø