Àá½Ã¸¸ ±â´Ù·Á ÁÖ¼¼¿ä. ·ÎµùÁßÀÔ´Ï´Ù.
KMID : 0811720160200060605
Korean Journal of Physiology & Pharmacology
2016 Volume.20 No. 6 p.605 ~ p.611
Facilitation of serotonin-induced contraction of rat mesenteric artery by ketamine
Park Sang-Woong

Noh Hyun-Ju
Kim Jung-Min
Kim Bo-Kyung
Cho Sung-Il
Kim Yoon-Soo
Woo Nam-Sik
Kim Sung-Hun
Bae Young-Min
Abstract
Ketamine is an anesthetic with hypertensive effects, which make it useful for patients at risk of shock. However, previous ex vivo studies reported vasodilatory actions of ketamine in isolated arteries. In this study, we reexamined the effects of ketamine on arterial tones in the presence and absence of physiological concentrations of 5-hydroxytryptamine (5-HT) and norepinephrine (NE) by measuring the isometric tension of endothelium-denuded rat mesenteric arterial rings. Ketamine little affected the resting tone of control mesenteric arterial rings, but, in the presence of 5-HT (100~200 nM), ketamine (10~100 ¥ìM) markedly contracted the arterial rings. Ketamine did not contract arterial rings in the presence of NE (10 nM), indicating that the vasoconstrictive action of ketamine is 5-HT-dependent. The concentration-response curves (CRCs) of 5-HT were clearly shifted to the left in the presence of ketamine (30 ¥ìM), whereas the CRCs of NE were little affected by ketamine. The left shift of the 5-HT CRCs caused by ketamine was reversed with ketanserin, a competitive 5-HT2A receptor inhibitor, indicating that ketamine facilitated the activation of 5-HT2A receptors. Anpirtoline and BW723C86, selective agonists of 5-HT1B and 5-HT2B receptors, respectively, did not contract arterial rings in the absence or presence of ketamine. These results indicate that ketamine specifically enhances 5-HT2A receptor-mediated vasoconstriction and that it is vasoconstrictive in a clinical setting. The facilitative action of ketamine on 5-HT2A receptors should be considered in ketamine-induced hypertension as well as in the pathogenesis of diseases such as schizophrenia, wherein experimental animal models are frequently generated using ketamine.
KEYWORD
Blood pressure, Ketamine, Mesenteric artery, Schizophrenia, 5-HT2A receptor
FullTexts / Linksout information
 
Listed journal information
SCI(E) ÇмúÁøÈïÀç´Ü(KCI) KoreaMed