Àá½Ã¸¸ ±â´Ù·Á ÁÖ¼¼¿ä. ·ÎµùÁßÀÔ´Ï´Ù.
KMID : 0988720080240040317
Journal of the Korean Academy of Stomatognathic Function and occlusion
2008 Volume.24 No. 4 p.317 ~ p.324
Lee Jung-Hoon

Lee Kyu-Bok
Jo Kwang-Hun
Lee Cheong-Hee
Abstract
The objective of this study was to test effects of (1) where the occlusal contact points locate on a full veneer crown, and (2) which direction the contact forces are directed to, on the stresses within the luting cement layer that might suffer microfracture. A total of 27 finite element models were created for a mandibular first molar, combining 9 different locations of the occlusal contact points and 3 different loading directions. Type 3 gold alloy was used for crown material with a chamfer margin, and the luting cement material was glass ionomer cements in uniform thickness of 75 ¥ìm. Modeled crowns were loaded at 100 N. Different patterns in the cement stress were observed in the vicinity of the buccal and lingual margins. Whereas, the peak stress in buccal margin occurred approximately 0.5 mm away from the external surface, the highest stress in lingual margin was observed at approximately 1 mm. Significantly different distribution of stresses was recorded as a function either of the location of the occlusal contact points or of the loading direction. Higher stresses were produced by more obliquely acting load, and when the loaded point was in the vicinity of the cusp tip.
KEYWORD
finite element, loading direction, luting cement, occlusal contact point, stress
FullTexts / Linksout information
Listed journal information
ÇмúÁøÈïÀç´Ü(KCI)