Àá½Ã¸¸ ±â´Ù·Á ÁÖ¼¼¿ä. ·ÎµùÁßÀÔ´Ï´Ù.
KMID : 1024620220420020225
Food Science of Animal Resources
2022 Volume.42 No. 2 p.225 ~ p.239
Profiles of Non-aureus Staphylococci in Retail Pork and Slaughterhouse Carcasses: Prevalence, Antimicrobial Resistance, and Genetic Determinant of Fusidic Acid Resistance
Yang Yu-Jin

Lee Gi-Yong
Kim Sun-Do
Park Ji-Heon
Lee Soo-In
Kim Geun-Bae
Yang Soo-Jin
Abstract
As commensal colonizers in livestock, there has been little attention on staphylococci, especially non-aureus staphylococci (NAS), contaminating meat production chain. To assess prevalence of staphylococci in retail pork and slaughterhouse carcass samples in Korea, we collected 578 samples from Korean slaughterhouses (n=311) and retail markets (n=267) for isolation of staphylococci and determined antimicrobial resistance phenotypes in all the isolates. The presence of and prevalence of fusB-family genes (fusB, fusC, fusD, and fusF) and mutations in fusA genes were examined in fusidic acid resistant isolates. A total of 47 staphylococcal isolates of 4 different species (Staphylococcus aureus, n=4; S. hyicus, n=1; S. epidermidis, n=10; Mammaliicoccus sciuri, n=32) were isolated. Fusidic acid resistance were confirmed in 9/10 S. epidermidis and all of the 32 M. sciuri (previously S. sciuri) isolates. Acquired fusidic acid resistance genes were detected in all the resistant strains; fusB and fusC in S. epidermidis and fusB/C in M. sciuri. Multi-locus sequence type analysis revealed that ST63 (n=10, 31%) and ST30 (n=8, 25%) genotypes were most prevalent among fusidic acid resistant M. sciuri isolates. In conclusion, the high prevalence of fusB-family genes in S. epidermidis and M. sciuri strains isolated from pork indicated that NAS might act as a reservoir for fusidic acid resistance gene transmissions in pork production chains.
KEYWORD
non-aureus staphylococci, antimicrobial resistance, retail pork, slaughterhouse carcass
FullTexts / Linksout information
Listed journal information