Àá½Ã¸¸ ±â´Ù·Á ÁÖ¼¼¿ä. ·ÎµùÁßÀÔ´Ï´Ù.
KMID : 1025520050470040625
Journal of Animal Science and Technology
2005 Volume.47 No. 4 p.625 ~ p.636
Effects of Different Ratios of Nonfibrous Carbohydrate to Ruminally Degradable Protein on In Vitro Fermentation and Lactation Performance of Dairy Cows
Seo I. J.

Lee D. H.
Lee S.-H.
Abstract
This study was conducted to determine effects of different ratios (3.5, 3.0 and 2.5) of nonfibrous carbohydrate (NFC) to ruminally degradable protein (RDP) on in vitro fermentation and lactation performance of dairy cows and optimum ratio of NFC to RDP in dairy rations. In vitro trial was conducted up to 12 hr with ruminal fluidtaken from ruminally cannulated Holstein cows. The level of dietary NFC did not affect ruminal pH. The ammonia-N concentration was not significantly different among treatments until 6 hr incubation, however, it was significantly (P < 0.05) decreased as the ratio of dietary NFC to RDP increased on 9 and 12 hr incubation. For volatile fatty acids, concentrations of both acetate and propionate were significantly (P < 0.05) increased on 3 hr incubation as dietary NFC contents of treatments increased, in other incubation times, they had no significant differences among treatments. Valerate and A:P ratio were not affected by the ratio of NFC to RDP. Isoacids and total VFAs were significantly (P < 0.05) increased with increasing dietary NFC contents and their values were highest in the treatment of 3.0 ratio. Meanwhile, for in vivo trial, 18 Holstein lactating cows were allotted to treatments in three groups of 6 cows. They were employed for 24 weeks to investigate nutrient intakes, and milk yield and composition according to different ratios of dietary NFC to RDP. Intakes of dry matter and energy were significantly (P < 0.01) increased, but NDF intake was significantly (P < 0.01) decreased as the ratio of dietary NFC to RDP increased. Milk yield for the ratio of 3.5 (32.7 kg) was significantly (P < 0.05) higher than those of other treatments. Milk fat (%) was significantly (P < 0.05) higher for the treatments of 3.0 (3.79 %) and 2.5 (3.79 %) than that (3.48 %) for the ratio of 3.5, but milk fat yield was not different among treatments. Contents and yields for milk protein and solids-not fat were linearly (P < 0.01) increased as the ratio of dietary NFC to RDP increased. However, milk urea nitrogen concentration was significantly (P < 0.05) decreased with increasing dietary NFC levels. Our results showed that the increasing level of NFC in the diet of dairy cows enhanced ruminal fermentation, N utilization and milk production and suggested that maximal fermentation and lactation performance were achieved when the dietary ratio of NFC to RDP was more than 3.0 in dairy rations.
KEYWORD
Nonfibrous carbohydrate, Ruminally degradable protein, Optimum ratio, In vitro fermenttion, Lactation performance
FullTexts / Linksout information
Listed journal information