Àá½Ã¸¸ ±â´Ù·Á ÁÖ¼¼¿ä. ·ÎµùÁßÀÔ´Ï´Ù.
KMID : 1094720120170061182
Biotechnology and Bioprocess Engineering
2012 Volume.17 No. 6 p.1182 ~ p.1189
LDL coating pVEGF/polyethylenimine complex enhances vascular endothelial growth factor expression
Li Jian

Yang Guang
Feng Min
Liang Hailong
Zhang Jun
Huang Danhong
Deng Siyun
Shen Yuan
Abstract
The major limitations to non-viral gene delivery are relatively low efficiency and cytotoxicity, which need to be addressed in the design of new vectors. In this study, negatively charged low density lipoproteins (LDL) were coated onto positively charged pVEGF/PEI complexes to form pVEGF/PEI/LDL terplexes by a two-step procedure. The biocompatible LDL was introduced to reduce the cytotoxicity of the gene delivery system and increase its affinity to cells. The successful formation of pVEGF/PEI/ LDL terplexes was confirmed by their near-neutral and slightly negative surface charges. The pVEGF/PEI/LDL terplexes were well-defined sub-micron spherical particles. On the cell viability assay, both of the PEI/LDL combined vector and pVEGF/PEI/LDL terplexes exhibited much lower cytotoxicity to HeLa cells and HUVE cells than those of PEI and pVEGF/PEI complexes, attributed to the shielding effect of the LDL. pEGFP/PEI/LDL terplexes showed significantly higher transfection efficiency in comparison to pEGFP/PEI complexes in serum-containing medium. pVEGF/PEI/LDL terplexes at their optimal N/P ratio and LDL/PEI weigh ratio induced higher expression levels of VEGF protein in HUVE cells than those of pVEGF/PEI complexes. Therefore, the pVEGF/PEI/LDL terplexes could be used as a promising gene delivery system to enhance VEGF protein expression.
KEYWORD
DNA terplexes, low density lipoproteins, nonviral gene delivery, VEGF protein expression
FullTexts / Linksout information
 
Listed journal information
SCI(E) ÇмúÁøÈïÀç´Ü(KCI)