Àá½Ã¸¸ ±â´Ù·Á ÁÖ¼¼¿ä. ·ÎµùÁßÀÔ´Ï´Ù.
KMID : 1148920120460040254
Nuclear Medicine and Molecular Imaging
2012 Volume.46 No. 4 p.254 ~ p.260
Validation of Simple Quantification Methods for 18F-FP-CIT PET Using Automatic Delineation of Volumes of Interest Based on Statistical Probabilistic Anatomical Mapping and Isocontour Margin Setting
Kim Yong-Il

Im Hyung-Jun
Paeng Jin-Chul
Lee Jae-Sung
Eo Jae-Seon
Kim Dong-Hyun
Kim Eui-Shin E.
Kang Keon-Wook
Chung June-Key
Lee Dong-Soo
Abstract
Purpose: 18F-FP-CIT positron emission tomography (PET) is an effective imaging for dopamine transporters. In usual clinical practice, 18F-FP-CIT PET is analyzed visually or quantified using manual delineation of a volume of interest (VOI) for the striatum. In this study, we suggested and validated two simple quantitative methods based on automatic VOI delineation using statistical probabilistic anatomical mapping (SPAM) and isocontour margin setting.

Methods: Seventy-five 18F-FP-CIT PET images acquired in routine clinical practice were used for this study. A study-specific image template was made and the subject images were normalized to the template. Afterwards, uptakes in the striatal regions and cerebellum were quantified using probabilistic VOI based on SPAM. A quantitative parameter, QSPAM, was calculated to simulate binding potential. Additionally, the functional volume of each striatal region and its uptake were measured in automatically delineated VOI using isocontour margin setting. Uptake-volume product (QUVP) was calculated for each striatal region. QSPAM and QUVP were compared with visual grading and the influence of cerebral atrophy on the measurements was tested.

Results: Image analyses were successful in all the cases. Both the QSPAM and QUVP were significantly different according to visual grading (P?
Conclusion: Simple quantitative measurements of QSPAM and QUVP showed acceptable agreement with visual grading. Although QSPAM in some group may be influenced by cerebral atrophy, these simple methods are expected to be effective in the quantitative analysis of 18F-FP-CIT PET in usual clinical practice.
KEYWORD
18F-FP-CIT PET, PET, Statistical probabilistic anatomical mapping, Volume of interest, Validation
FullTexts / Linksout information
Listed journal information
ÇмúÁøÈïÀç´Ü(KCI) KoreaMed ´ëÇÑÀÇÇÐȸ ȸ¿ø