Àá½Ã¸¸ ±â´Ù·Á ÁÖ¼¼¿ä. ·ÎµùÁßÀÔ´Ï´Ù.
KMID : 1161420180210050481
Journal of Medicinal Food
2018 Volume.21 No. 5 p.481 ~ p.488
The Red Alga Gracilariopsis chorda and Its Active Constituent Arachidonic Acid Promote Spine Dynamics via Dendritic Filopodia and Potentiate Functional Synaptic Plasticity in Hippocampal Neurons
Mohibbullah Md.

Choi Jae-Suk
Bhuiyan Mohammad Maqueshudul Haque
Haque Md. Nazmul
Rahman Md. Khalilur
Moon Il-Soo
Hong Yong-Ki
Abstract
Exogenous neurotrophins can induce neuronal differentiation, outgrowth, survival, and synaptic function in the central nervous system. In primary cultures of rat hippocampal neurons, an ethanol extract of the red alga Gracilariopsis chorda (GCE) and its active compound arachidonic acid (AA) significantly increased the densities of dendritic filopodia and spines, promoted the expression of presynaptic vesicle protein 2 (SV2) and postsynaptic density protein 95 (PSD-95), induced robust synaptogenesis, and increased the expression of cell division control protein 42 (CDC42) and actin-related protein 2 (ARP2), which are important for actin organization in dendritic protrusions, and facilitated presynaptic plasticity by increasing the size of the synaptic vesicle pool at presynaptic nerve terminals. In addition, oral administration of GCE and AA for 10 days, at concentrations of 1?mg/g and 2.2?¥ìg/g body weight, respectively, significantly protected against scopolamine-induced memory impairment in mice by increasing the latency time in the passive avoidance test. These results provide strong scientific evidence that these natural products can be used as neurotrophic substances and/or dietary supplements for the prevention and treatment of memory-related neurological disorders via the reconstruction of axo-dendrites and its synapses.
KEYWORD
arachidonic acid, Gracilariopsis chorda, hippocampal neurons, passive avoidance, synaptogenesis
FullTexts / Linksout information
Listed journal information
SCI(E) ÇмúÁøÈïÀç´Ü(KCI)